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Abstract—An asymptotic theory of non-linear mass transfer in laminar gas-liquid systems with a moving

phase interface is proposed, The problem is solved in the diffusion boundary layer approximation account-

ing for the interaction between the hydrodynamic flow and the diffusive flux for the case of intensive mass
transfer between the gas and the liquid.

INTRODUCTION

INDUSTRIAL gas absorption is most often realized in
packed bed columns, Having in mind that the particles
of the bed are small, the interphase mass transfer of
an absorbed substance takes place in thin layers, close
to the moving phase boundary. In earlier studies [1]
mass transfer in diffusive boundary layers has been
studied from the point of view of linear diffusive
boundary layer approximation theory.

It was shown [2] that in the presence of intensive
mass transfer large mass fluxes can induce a secondary
flow through the phase boundary. The velocity of this
flow, v,, which is normal to the phase interface, could
be directly calculated [3] utilizing the diffusive mass
flow through the interface

D= — o 6

Equation (1) is valid at the phase interface, while ¢/0n
denotes differentiation normal to the interface. Thus
one finds that the mass flux through the phase inter-
face comprises both diffusive and convective com-
ponents [3]
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where
p* = po+Mc*.

It follows directly from equation (1) that in the
presence of large concentration gradients the con-
vective diffusion equation is nonlinear. For the case
of gas-liquid systems it was shown [4] that in the
liquid these non-linear effects have to be taken into
consideration only for the case of high pressure

absorption. In the gas the non-linear effects are pre-
sent in the majority of cases and could arise at normal
pressures too.

Non-linear mass transfer in liquids has been theo-
retically analysed in refs. {1, 5] for electrochemical
dissolving, ionic transfer and dissolving of the walls
of a flat channel [1, 6].

In gases the non-linear mass transfer is connected
to mass transfer induced Stefan-type flows {7]. Non-
linear effects of this type have been theoretically stud-
ied in refs. [1, 8] for the case of condensation from a
turbulent flow assuming a constant mass transfer rate
along the condensate film surface.

The purpose of this paper is to report some theor-
etical results on non-linear mass transfer in a laminar
gas-liquid system with a moving phase interface in
the diffusion boundary layer approximation.

THE MATHEMATICAL MODEL

Time-independent momentum and mass transfer of
the absorbed substance are described by a system of
partial differential equations comprising the Navier—
Stokes equations, the continuity and the convective
diffusion equation. This system can be written in a
convenient form [1] introducing the following dimen-
sionless variables :
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¢ molar concentration of the absorbed
substance

diffusivity

local mass transfer rate of the substance
absorbed through the phase interface
mass transfer coefficient

molecular mass of the absorbed substance
velocity along the flow

velocity across the flow.

s

T s

Greek symbols
4 dynamic viscosity
v kinematic viscosity

NOMENCLATURE

p  density
yx  Henry’s constant.

Subscripts
0 beginning of the phase interaction or
density in the absence of the absorbed
substance
oo far from the phase interface.

Superscripts
*  phase interface
gas.

u, 1/2
&=y <4—5;) , ¥y=20
& = 8", %:% 3)
U= UoErth]
172
b= (’%") 65 —02)
C—”‘%*!/z
‘?52 = ¢2(52), ‘ffz = ‘f’z(‘fz)
uoo 172
by = —y aDx) ° y<0
8= ScV%, Sc=. @

In a boundary layer approximation this system
takes the form

91 +er 916 =0

Y’ +e =0
61 +265 babs’ = 0
Ui +2e,0.95 = 0. &)

Equations (5) are subject to boundary conditions
expressing the existence of a constant velocity poten-
tial flow far from the phase interface, cocurrent flows
of the separate phases, continuity of the velocity,
stress and the mass flux at the phase interface. It is
also assumed that in both the liquid and the gas the
concentrations satisfy Henry’s law

$:(0) = —8:97(0), ¢:1(0) = 291%455(0)
¢1(0) = 267"

Y1(0) = 1—y,(0), ¢,(0)=0

$2(0) = 0,45(0), Py(0) =¢7'
10 = — Lo (2 Vo100
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Parameters §, and 8, account for the kinematic and
the dynamic interactions between the separate phases
while 8, and 8, are responsible for the influence of the
mass transfer on the hydrodynamics (having in mind
equation (1) for the gas and the liquid phases).

From equations (5) and (6) it follows directly that
the concentration of the absorbed substance at the
phase interface is constant ; therefore new boundary
conditions can be introduced, namely

Vi@ =4, ¢(0)=1-4 ®

where A can be determined utilizing the last of equa-
tions (6). Thus, equations (5) could be solved as two
separate systems.

THE METHOD OF SOLUTION

For cases of practical interest the parameters 0;,
i=1,2,3,4, can be considered to be small and equa-
tions (5) and (6) could be solved by perturbation
methods, expressing the unknown functions by expan-
sion of the type

F=F940 FO40,F®4+0,F®+0,F®. (9
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If the corresponding expressions of the form of equa-
tion (9) are introduced in equations (5) and (6), one
can obtain separate equations to determine the new
functions.

The zeroth-order approximation follows directly
from equations (5) and (6) if one sets 8, =0,
i=123,4

First-order approximations are obtainable from

6 e (8760 + ¢ $%) = 0
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i=1,2,34 j=12 (10
subject to boundary conditions
o0 =0, i=12, j=1,2
$170) = —¥(”(©), $570) =y
o) =0, i=23,4
31" (0) = 2(e2/61)$1”(0)
&0y =0, i=1,2,3,4, j=1,2
YP0) =49, i=1,2,3,4
Y(0) =0, i=1,2,3,4, j=1,2
¢(%0) =0, ¢{70)=0
o)y =0, i=1,3,4
$52(0) = —3(er/e2)*0 (¥ (0)
Y0 = —4°. an

The values for 49 (i =1, 2, 3, 4) can be calculated
from

O =Ly, 1234
0

THE ZEROTH-ORDER APPROXIMATION

The zeroth-order approximation has been reported
in a number of papers [9-13]
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where f(z) is the solution of the boundary value
problem

A+ =0, O =FO) =0, f(@)=1 (14)

and it is tabulated in ref. [10], while ¢, is a function
of the Schmidt number for the gas

@0 = r exp [— % fpf(S) dS]dP- as)
o o

Its values are tabulated in ref. [11] or could be cal-
culated by approximate formulas [1].

THE KINEMATIC INTERACTION

The kinematic interaction between the phases is a
result from the continuity of the velocity distribution
at the phase interface and it is accounted for by 6,
and the following functions (some of which have been
obtained earlier [9-13]):
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THE DYNAMIC INTERACTION

The dynamic interaction between the phases is a
result of the continuity of the stresses at the phase
interface. It is accounted for by 8, and the following
functions (some of which have been obtained earlier

[9-11]):
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Table 1

Sc'’? Q(Se, ) @2 = (1/8){/(n/Sc)
11 0.14519 0.20142
1.2 0.14421 0.18463
L5 0.13053 0.14770
2.0 0.10517 0.11078
5.0 0.04416 0.04431
10.0 0.02216 0.02216
20.0 0.01108 0.01108
50.0 0.00443 0.00443
100.0 0.00222 0.00222

a
AP = dona02 o

@2 = @,(Sc) = Q(Sc, ). (17)

Having in mind that &, > 10 for Q and ¢, one could
assume with acceptable accuracy

1 11
0(Se,&2) = §\/ <—g;)erffz— el

1
92(S0) = g\/ (é’-c)

Table 1 presents the values of ¢,(Sc). In the second
column are listed the values of this function from
Q(Sc¢, ), equations (17). These quantities were cal-
culated utilizing the series expansion for the error
function, substituting it in the integral, and calculating
the sum of the series obtained after the integration. In
the last column of Table 1 one finds the values of ¢,
as calculated from the last of equations (18).

(18)

THE NON-LINEAR MASS TRANSFER
EFFECTS IN THE GAS

The non-linear mass transfer effects in the gas are
a result of the Stefan type flow. It is accounted for by
0, and the functions

2A(0)
&19o
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where ¢(z) is the solution of the problem

207 +fQ "9 =0, 2" +ff =0

AD —
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0 ' +
02 0.4
¢I
0.5
FiG. 1.
Table 2
Se ®3 3.54.800-¢7
0.10 17.49 16.42
0.20 10.40 10.34
0.50 5.46 5.61
0.80 3.99 4.10
1.00 3.45 3.54
1.20 3.06 3.13
1.50 2.65 2.70
1.80 2.36 2.39
2.00 2.21 2.23
5.00 1.24 1.21
10.00 0.80 0.76
) =1, 90 =¢(0)=0, f(0)=s"(0)=0,

f(0) = 1. (20)

In equations (19) ¢, is a function of the Schmidt
number for the gas

03 = f ) U o(s) ds] exp [— %ff(s) ds] a.
0 0 0

@n

Function ¢ is shown on Fig. 1, while the values of
¢, are listed in Table 2. In the last column of this table
one can find values of ¢, calculated by an approximate
formula.

THE NON-LINEAR MASS TRANSFER
EFFECT IN THE LIQUID

The non-linear mass transfer effect in the liquid is
due to mass transfer induced secondary flows in this
phase. This effect is accounted for by 6, and the fol-
lowing functions :

SI(E) =0, $I(E) = — — (1—A®)
\/n
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THE DIMENSIONLESS VELOCITY
PROFILES

The dimensionless velocity profiles are directly
obtainable from equations (3), (4), (13), (16), (17),
(19) and (22) in the form

£,0, 1+a ¢ 23)
u _ éz 86482 az
= l+92a\/1zerfc82 x (ta)’

(«:2 % 1_‘ia)exp( . @9

INTERPHASE MASS TRANSFER

The rate of the interphase mass transfer between
the diffusive boundary layers of length / defined as

J = Mkz, = Mk% ©5)

can be expressed by means of the average mass flux
through the phase interface as

1 {7, 1!
J=-{ Idx=-1] Idx.
] 0 l [}

One can substitute equations (2) into equation (26)
for the gas and the liquid to obtain expressions for
the Sherwood numbers

kg j’(aa) A~
Sh——w——,, = dx:—:—Pem (0
D §ols Jo \OV fmo Po Vi

Sh = k_ J- (60) dx = — -p:Pe"’zdr’z(O)
o = Po

(26)

D Pole oy
)
where the Peclet numbers are defined as
Gl _ Ul
Pe—-—5~, Pe = D (28)

and for ¢ {(0) and ¢ 5(0), having in mind equations
(13)-(22), one has
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When the rate of the interphase mass transfer is
limited by the diffusion resistance in the gas, from the
last of equations (6) it follows directly that /e, — 0,
that is a — 0 and for the Sherwood number one has

2 8,
h o= —— e‘/2<—+ + 26 ) 30
Po 1o “‘Pg : (1) (30)

When the process is limited by the resistance of the
liquid phase y/¢; = o0, @ - o0, therefore

@3y

Po

e 2 &0 &
Sh = — Pe'l? (\/ + 86, —— \/n —86, E‘jﬁ) .

CONCLUSIONS

The analysis of equations (27)—(31) implies that the
non-linear mass transfer effect shows up both through
#*/Bo and p*/po

3% Mé"* * MC*
p* g

=l —=1 , &% =qyc* 32
Pe Do Po Po X ©2)
and 8, and 6,
C C Py Mé,
0,=—, = —, = e, 33
) £ 2% 00 Po @3

For low solubility gases (eo/x =~ 0) the effects of
the kinematic interaction between the phases and the
Stefan type flow in the gas are absent, while the non-
linear mass transfer effect in the liquid depends on the
pressure and it can be observed only when the pressure
is high.

For high solubility gases (y/s, = 0) the effects of
the dynamic interaction between the phases and the
non-linear mass transfer in the liquid are absent
(although for this case ¥ « 1 and it is possible that
8, > 107? even at normal pressure).

For moderately soluble gases (10~ < g¢/y < 10)
non-linear mass transfer effects in the liquids are prac-
tically absent, because in this case 6, ~ 0. But the
Stefan type flow in the gas influences the mass transfer
in both phases.

Non-linear mass transfer in either phase (the inten-
sive mass transfer induced flow) does not influence
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hydrodynamics in the other phase. This is obvi-

ously valid for the approximations discussed in the
above, that is in the first approximation in 8, and §,.

. V. S. Krylov,
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TRANSFERT DE MASSE NON LINEAIRE DANS DES COUCHES LIMITES—
1. THEORIE ASYMPTOTIQUE

Résumé—On analyse influence des trajectoires des gouttelettes et de leur distribution en taille sur le

mécanisme du transfert thermique & partir d’un diédre chaud isotherme dans un écoulement air-brouillard

d’eau. Pour simplifier les calculs, on utilise une méthode approchée avec une théorie du diamétre équivalent.

Les équations de I'écoulement du film d’eau sont résolues par une méthode d’intégration, tandis que les

équations de 'écoulement gazeux sont traitées par une méthode de différence finie. Les conditions d’in-

terface entre film d’eau et couche de gaz sont déterminées par itération des solutions des deux écoulements
d’eau et de gaz.

NICHTLINEARER MASSENTRANSPORT IN GRENZSCHICHTEN—
1. ASYMPTOTISCHE THEORIE

Zusammenfassung—Es wird eine asymptotische Theorie des nichtlinearen Massentransports in laminaren

Gas-Fliissigkeits-Systemen mit bewegter Phasengrenze vorgeschlagen. Das Problem wird mit einer

Niherung der Diffusionsgrenzschichten geldst unter Beachtung der Hydrodynamik und der Diffusions-
stromdichte im Falle intensiven Massentransports zwischen Gas und Fliissigkeit.

HEJIMHEHHBIA MACCOOBMEH B MOI'PAHUYHBIX CIIOSX—1. ACHMITTOTUYECKAS

TEOPHA

Amaotamss—IIpeioxena acCUMITOTAYECKAs Teopus HesgHENHOTO MaccOOOMEHa B JIAMBHADHEIX CHCTE-

Max ra3-XHOKOCTh C ABHAKYIIeHCH MexdasHO# noBepXHOCTHIO. 3aa%a pemanacs B npubavkerny aud-

(byBHOHHOFO HOrpaHuYHOrO Cios, YYHTHBRIOUIEM p3auMoneicrexe MEXAY THIOIPOAHHAMHYCCKHM H
MN}’SHOHHHM NOTOKAMHM IUIA CiIyqas HHTCHCHBHOIO Maccoobmena MEXAY ra3oM H XKHIKOCTBIO.



